Reduce, reuse, recycle: A guide to circular economies of digital devices


Mike Jensen, Association for Progressive Communications (APC)

The issue of climate change adaptation and mitigation is rising ever higher on humanity’s sustainability agenda. The promise of the digital revolution has come at a huge cost, including the massive environmental impact of the exploding number of digital devices that are produced and disposed of within a few years. Globally, there are estimates that 27 billion networked devices will be sold in 2021, up from 17 billion in 2016. Most devices last less than five years.

香蕉视频app安卓 Digital technologies can help us fight climate change, environmental degradation and pollution, but we must significantly reduce their impact on the planet. The negative effects of digital technologies are diverse, from the pollution and health impacts of the extraction of minerals for digital devices, to the energy used in their manufacture, and the poisons released in aquifers resulting from improper disposal.

One of the key strategies in mitigating the environmental impact of digital devices is to treat the devices as part of circular economies. These strategies are not unique to the digital realm, and can be used in all aspects of the economy to reduce the use of polluting or exploitative inputs, minimise energy consumption in manufacture and operations, expand the lifespan of devices through repair and reuse, and improve effectiveness of recycling.

香蕉视频app安卓 The Association for Progressive Communications (APC) is currently working to promote, develop and adopt practices, models and systems that are environmentally and socially sustainable among our network. To raise awareness of the potential value of the circular economy model for digital devices, and to describe methods of implementing them, APC commissioned the development of this guide by Leandro Navarro (UPC and Pangea) and Syed Kazi (Digital Empowerment Foundation).

This preview was developed with contributions from Jes Ciacci (Sursiendo), Florencia Roveri (Nodo TAU), Peter Pawlicki (Electronics Watch), Alejandro Espinosa (Computer Aid), Patience Luyeye, Rozi Bakó (Strawberrynet), Julián Casasbuenas and Plácido Silva (Colnodo), and Shawna Finnegan (APC).

This edition of the guide is a preview, to solicit feedback and suggestions prior to the publication of the full document. It comprises an introductory chapter which outlines the need for circular economies of digital devices and describes the scope of potential interventions and issues that are raised. Chapter 2 consists of a series of case studies of projects which implement elements of the circular economy for digital devices. Future chapters will reflect on lessons and best practices from case studies, and will include recommendations for local and collective action.

香蕉视频app安卓 on Control of Transboundary Movements of Hazardous Wastes and their Disposal. Informal workers sort and process electronic waste for valuable minerals and resources. In 2019, the loss of secondary resources from electronic waste disposal was estimated to be valued at – is a huge barrier to the circularity of digital devices. In a capitalist society focused on infinite growth, durability of devices may be considered an enemy of profit.

Ecodesign initiatives are starting to define minimum requirements or ratings香蕉视频app安卓 to promote durability and repairability of digital devices. The ability to upgrade digital devices with additional RAM (random access memory) and new batteries can significantly extend the useful life of a digital device, and make its computational power comparable to a new computer.

Projects that work towards circularity of digital devices also aim to reduce social inequality. Low-cost computing has become essential to overcome barriers to access to the internet, and social enterprises that repair and sell these devices provide employment opportunities for individuals that are interested in this work.

香蕉视频app安卓 Learn more about social enterprises and projects to repair and recycle digital devices through our case studies in Chapter 2.

How do circular economies work for the planet?

Circular economies aim to keep resources in use for as long as possible, recovering and regenerating materials and products at the end of their “service life”.

Demand for low-cost computing for remote education has exploded in the context of the COVID-19 pandemic, and advocacy for the “right to repair” is growing in many countries as there is growing recognition that repair and reuse of digital devices香蕉视频app安卓 could be used to address critical shortages.

Circular economies香蕉视频app安卓 of digital devices are declarations of interdependence. My computer or phone could have a life before me, or after me, and throughout its life that device interacts with the natural environment, upon which we all depend.

Circular economies recognise that we must design technology in ways that reduce environmental impact, increase energy efficiency, and enable recycling and reuse.

Reduce: Circular economies aim to reduce the negative impacts of digital devices by prolonging their useful life, reducing packaging, and re-designing the technology. The average lifespan of a digital device is affected by many factors, including the availability of software updates and replacement hardware, which are usually considered in the design process for product repairability and upgradeability.

Reuse: Often digital devices that appear to be at the “end of their life” are in fact only at the “end of their use”, and only need to be repaired, and their data cleaned, in order to extend their useful life. Reuse of digital devices is usually supported by online and physical “second-hand” markets, with or without a warranty.

Recycle: When a digital device can no longer be reused it can undergo a process of disassembly or separation of the parts – and subsequent extraction of valuable resources. Waste electronic equipment, including digital devices, is typically regulated by law.

What are the processes of a circular economy of digital devices?

香蕉视频app安卓 A circular economy can be understood in terms of different processes in the life cycle of a digital device. These processes are interdependent and create new loops within the wider life cycle of a digital device. A laptop computer may go through several cycles of use, repair and reuse before it has reached the “end” of its life, at which point it may be disassembled, and its resources extracted.

Mining and extraction are considered the first process in the life cycle of a digital device. These devices often rely on minerals that were extracted in conditions of armed conflict and widespread human rights violations. Although many global initiatives are working to increase transparency and accountability within supply chains for minerals, many devices continue to be produced with “conflict minerals”.

Manufacturing for most major digital device brands is done by companies working in electronic manufacturing services (EMS), which design, manufacture, test, distribute, and offer return/repair services for the original equipment manufacturerer (OEM). Foxconn, a Taiwanese EMS company, manufactures parts and equipment for other companies such as Apple, Dell, Google, Huawei and Nintendo. These EMS companies have their own suppliers of printed circuit boards and electronics components. Human rights violations香蕉视频app安卓 are a serious concern in many factories.

Sustainable public procurement means that public institutions only obtain goods and services that minimise the damaging effects on the environment and have been produced under humane working conditions. The buying power of major public customers can have significant economic weight and therefore a potential leverage with the supplier for sustainability issues.

Public institutions, directly or through purchasing consortiums, can have procurement contracts that include clauses to ensure compliance with environmental codes – e.g. ecodesign, life cycle assessment (LCA), quality recycling – as well as labour, safety and quality standards in the supply chains of the information and communications technology (ICT) hardware purchased.

香蕉视频app安卓 Standards might include due diligence of suppliers regarding compliance with a set of requirements, and also requirements regarding take-back, further reuse, and responsibility for e-waste disposal by certified agents. In addition they may have cost supplements for good quality recycling that maximises resource recovery and minimises disposal and effects.

Public procurement must also consider compliance with the Core Conventions of the International Labour Organization (ILO) in the production process, or whether energy efficiency demands are met.

Through their added negotiating power, purchasing consortiums can help to minimise environmental impact while improving the quality, cost efficiency and effectiveness of procurement processes and the verification of compliance.

The use, repair and reuse香蕉视频app安卓 of digital devices depend on many factors. A device may be deemed no longer suitable for a task because the task requires more computing capacity, different functionality, or because the performance of the device degrades over time as it wears out. The software used on most devices evolves over time (e.g. bug and security fixes, new features), and some devices can also have upgraded hardware to adapt to evolving needs.

Due to the rapid evolution of digital electronics, specialised parts may no longer be manufactured, and so the supplier may be unable to provide spare parts to repair the device. The reuse process ends when the device or a component returns to the disposal state, which means its use value, even if improvements were made, does not allow for reuse again. This results in recycling, a process that transforms computational use value into raw material use value.

Recycling and management of electronic waste香蕉视频app安卓 is considered a final process in the life cycle of a digital device, but within circular economies this process may also be the beginning of a new cycle, whereby components of the device are disassembled and used to create new digital technologies.

香蕉视频app安卓 If we consider that devices are valuable for their computing resources, then we should focus on the right to use a device, not on the right to ownership. Maximising circularity asks us to see devices as collective property that circulates among users until they are finally recycled.


Mining and extraction

"We are struggling to survive": Resistance to mining in Acacoyagua, Chiapas

Written by: Jes Ciacci (Sursiendo)

Full text of this case study is available on our blog in English and Spanish.

香蕉视频app安卓 In 2015, members of the local communities of Acacoyagua, Chiapas, Mexico created the peaceful citizens’ movement Frente Popular en Defensa del Soconusco (FPDS) in response to growing health and environmental impacts of mining and exploitation of gold, silver, lead, zinc, iron and titanium. Digital devices contain many of these minerals.

As of September 2019, the Ministry of Economy of Mexico has registered was founded with the intention to develop a mobile device that does not contain conflict minerals (which in smartphones are typically gold, tin, tantalum and tungsten), has fair labour conditions for the workforce along the supply chain, and can be repaired and upgraded to help people to use their phone longer.

香蕉视频app安卓 As of 2020, the social enterprise has released three generations of the Fairphone, with more than 100,000 users. A special focus is the modular design of the device, which allows for easier repair. Fairphone 2 was the first smartphone to get a project essentially consists of four elements:

  1. Collect, repair and refurbish digital devices for reuse, ensuring final recycling.
  2. Bootstrap collaborative local circular economy ecosystems across all stakeholders in the reuse and recycling of digital devices.
  3. Trace, certify and measure circularity of products, members and platforms.
  4. Coordinate the development of open-source tools for reusing electronics. makes agreements with public and private donors of digital devices, social enterprises and social inclusion programmes working in repair, refurbishment and recycling, and social organisations working with end-users.

香蕉视频app安卓The key features of the eReuse strategy are:

  • Data collection about circularity of devices (chain of custody).
  • Data aggregation and analysis of impact: social (hours of computing use created) and environmental (CO2e savings).
  • Repair and refurbishment training.
  • Dissemination of information based on the results of data collection and analysis, including raising awareness about the environmental impact of digital devices.

香蕉视频app安卓 The project began in 2013, and in 2015 the computer donation campaign was launched. As of September 2020, approximately 10,000 computers had been processed and supported through 10 to 20 active social organisations in three regions: Barcelona, Madrid and Bilbao.

The impact of the project includes:

  • Reduction of electronic waste and environmental impact of digital devices.
  • Significant increase in access to digital devices in three regions.
  • Creation of jobs in computer refurbishment.
  • Development of tools for more efficient processing of digital devices.
  • Collection of reliable data to promote circularity and to quantify and certify impacts.
campaign is distributing refurbished ICT equipment to specific communities in Romania where access to the internet is low – focusing on schools and NGOs. The campaign was launched in June 2020 and ran until October, and is part of a broader waste electrical and electronic equipment (WEEE) awareness campaign by ECOTIC in partnership with the Romanian Ministry of Environment, Water and Forests.

Computer Aid Solar Learning Lab

Written by Alejandro Espinosa (Computer Aid)

The is an initiative launched in Argentina in November 2015 by the organisation Artículo 41. The intention of the initiative is to raise awareness of repair as a sustainable practice of responsible consumption, inspired by movements developed in other countries.

Club de Reparadores aims to promote the repair of objects, to extend the useful life of things, claim the culture of repair, and promote knowledge and abilities involved in repairing and care and closeness as a social value.

Recycling and management of electronic waste

Computer e-waste management in Rosario, Argentina: From scarcity to excess

香蕉视频app安卓Written by Florencia Roveri (Nodo TAU)

香蕉视频app安卓 In 2010, started to develop an e-waste management plant, reducing environmental impact and offering work, social and digital inclusion. The challenges addressed were to recover and repair unused computers for reducing e-waste and devices kept unused in houses, institutions, private companies and government offices, while developing a sustainable enterprise with decent work conditions that offers job opportunities and providing devices to digitally excluded groups.

Nodo TAU is a civil association founded in 1995 by a group of engineers to work on the promotion of ICT for social – mainly grassroots – organisations, to address the digital divide. From 2003 to 2008, Nodo TAU developed a network of community telecentres together with the coordination of territorial organisations. Nodo TAU promoted the reception of discarded computers to be reconditioned in a “Bank of Machines” where they received the donations to be repaired.

Machines that cannot be repaired

香蕉视频app安卓 Donations of used digital devices started slowly, coming from individuals and small companies. As time passed, the quantity of devices became unmanageable for the organisation, implying risks for people working in Nodo TAU and in the house shared with other organisations.

The problem became more evident when, in 2007, Nodo TAU received numerous donations of computers from a multinational agro-industrial corporation, which included modern notebooks that allowed the development of a mobile digital classroom (Aula Digital) for workshops in communities. The donation also included a large amount of machines that could not be repaired. Facing the problem of e-waste accumulation, Nodo TAU started to deepen its work on local circuits of recycling and to develop resources for addressing e-waste management.

An educational pilot project

香蕉视频app安卓 In 2008, the Secretariat of Environment and Public Space invited Nodo TAU to join a project for the development of an e-waste recycling plant, together with Taller Ecologista, the main environmental organisation of the city, and the National Institute of Industrial Technologies (INTI).

香蕉视频app安卓 As a result of this discussion, in 2009 Nodo TU developed an educational pilot project, consisting of the coordination of workshops on repairing computers with young people from poor neighbourhoods, together with the municipal Secretariats of Social Economy and of Environment in charge of the provision of the collected devices.

香蕉视频app安卓 In 2012, the pilot project became an enterprise named “Reciclados Electrónicos”, promoted by the municipal government. Development of the plant was delayed due to internal conflicts in the municipal government.

In 2016, with support from APC, Nodo TAU developed a study of the local market and holders of e-waste treatment facilities, developing a business model for the functioning of the plant. This included collaboration with Barcelona-based APC member Pangea to implement the traceability system developed by the initiative. However due to internal conflicts in municipal government, the project of the plant was stopped.

New opportunities

Nodo TAU is now working with a close grassroots organisation, Grupo Obispo Angelelli, who invited Nodo TAU to join projects aimed at job inclusion for young people in the context of the provincial social programme Nueva Oportunidad (New Opportunity) in 2019.

In 2019, a provincial law was approved that regulated the management of e-waste, including extended responsibility and recognising the social repairers as a stakeholder. Furthermore, Nodo TAU has found an adequate place to install the plant that complies with all the formal requirements for functioning, and has started operations. A key factor in its implementation and sustainability was the inclusion of the plant in the Nueva Oportunidad programme.

香蕉视频app安卓 In 2020, a new source of devices started to arrive at the plant: netbooks from the educational programme Conectar Igualdad, which distributed five million computers from 2010 to 2015 among students of public high schools. When the programme was discontinued, large amounts of computers were left unused, piled up in schools due to problems of poor maintenance. When the COVID-19 pandemic forced schools to lose and education turned to digital platforms, these unused computers became fundamental for students.

香蕉视频app安卓 In September 2020, the provincial Ministry of Education signed an agreement with Nodo TAU for the repair and upgrade of computers, working in coordination with the authorities of each school.

E-waste and employment in the region

香蕉视频app安卓 During 2019, Nodo TAU was invited by the ILO to participate in a research project about e-waste and employment in different countries of the region, starting with a pilot in Peru and Argentina. The project involved the reconstruction of the value chain, involving the organisation of local roundtables for discussion among relevant actors.

In 2020, the work with the ILO followed a second period dedicated to research on the management of electronic waste from the circular economy perspective. Research will be followed by capacity building in the field.

Sustaining and scaling electronic waste management

香蕉视频app安卓 The sustainability of the project depends on the public programmes and policies in which it participates. With the support of the provincial government, the project offers scholarships for young people training and working in the plant, guaranteeing a stable income for them. The process is always evolving and allowing new scenarios, generating allies that strengthen the work, mainly in reference to the stability of workers involved in the plant.

More recently, coordination with the local office of the ILO to develop research work provides relationships with local companies, unions, municipal governments of the region and different areas of government, that also contributes to the growth, dissemination and potential replicability of the experience. This could be mentioned as a good practice of the experience. Scalability is being addressed as a key objective at this moment.

is a producer responsibility organisation (PRO), collaborating with enterprises in India to design and implement extended producer responsibility (EPR) programmes for electronic waste. Extended producer responsibility requires producers of digital devices to be made responsible for the full life cycle of that device, particularly at the end of its life. Karo Sambhav works with producers and manufacturing companies like Apple, Dell, HP, Lenovo and Toshiba to implement their EPR obligations.

香蕉视频app安卓 Karo Sambhav focuses on raising awareness, building capacity and exchanging knowledge among the e-waste sector in India. The objective of this collaboration is to

« Go back